Abstract

We analyze measurements of bipolar, Debye-scale electrostatic structures and turbulence measured in the transition region of the Earth's collisionless bow shock. In this region, the solar wind electron population is slowed and heated, and we show that this turbulence correlates well in amplitude with the measured electron temperature change. The observed bipolar structures are highly oblate and longitudinally polarized and may instantaneously carry up to 10% of the plasma energy ψ ≡ e/kbTe ≈ 0.1 before dissipating. The relationship between ψ and the field-aligned scale size Δ∥ of the Gaussian potential suggests that the bipolar structures are BGK trapped particle equilibria or electron hole modes. We suggest a generation scenario and a potential role in dissipation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.