Abstract

We have used the ferroelectric field effect in heterostructures based on superconducting NdBa2-Cu(3)O(7-delta) and ferroelectric Pb(Zr0.2Ti0.8)O3 to electrostatically modulate in a reversible and nonvolatile fashion the hole carrier density of the superconducting layer. Reversing the ferroelectric polarization induces a constant relative change in the resistivity and Hall constant of 9% and 6%, respectively, at all temperatures above the superconducting transition. The cotangent of the Hall angle displays a T2 dependence with a slope that increases as the carrier density is reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.