Abstract

We study the effect of a local potential shift induced by a side electrode on the edge modes at the boundary between gapped and ungapped bilayer graphene. A potential shift close to the gapped-ungapped boundary causes the emergence of unprotected edge modes, propagating in both directions along the boundary. These counterpropagating edge modes allow edge backscattering, as opposed to the case of valley-momentum-locked edge modes. We then calculate the conductance of a bilayer graphene wire in presence of finger-gate electrodes, finding strong asymmetries with energy inversion and deviations from conductance quantization that can be understood with the gate-induced unprotected edge modes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.