Abstract

Electrostatic solitary waves (ESWs) have been observed by satellites in the auroral region of the Earth’s magnetosphere. These ESWs are found to be having both positive and negative electrostatic potentials. Using the Sagdeeev psuedo-potential technique, arbitrary amplitude electron-acoustic solitary waves/double layers are studied in an unmagnetized plasma consisting of non-thermally distributed hot electrons, fluid cold electrons, a warm electron beam, and ions. The inertia of the warm electrons, and not the beam speed, is essential for the existence of positive potential solitary structures. Existence domains for positive as well as negative potential electrostatic solitons/double layers are obtained. For the typical auroral region parameters, the electric field amplitude of the negative potential solitons is found to be in the range ∼(3–30) mV/m and ∼(5–80) mV/m for the positive potential solitons. For the negative potential solitons/double layers, the amplitudes are higher when their widths are smaller. On the other hand, the amplitude of the positive potential structures increase with their widths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call