Abstract
The nonlinear coupled ion-acoustic and ion-cyclotron waves propagating obliquely to the external magnetic field in dense collisionless electron-positron-ion magnetoplasma are investigated using Sagdeev potential method. A semiclassical approach is used. Electrons and positrons are treated as degenerate Fermi gases described by Thomas–Fermi density distribution and ions behave as classical gas. It is found that the presence of degenerate positrons in a dense Thomas–Fermi plasma significantly modifies the structure of solitary waves by restricting the electrostatic potential to a certain maximum value which depends upon the concentration of positrons in the system. It is also noted that only subsonic humplike solitary waves can exist and for a given angle of propagation, the presence of degenerate positrons diminishes the amplitude as well as width of the solitary wave.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.