Abstract

The electrostatic deposition of particles has become a very effective route to the assembly of many nanoscale materials. However, fundamental limitations to the process are presented by the choice of solvent, which can either suppress or promote self-assembly depending on specific combinations of nanoparticle/surface/solvent properties. A new development in the theory of electrostatic interactions between polarizable objects provides insight into the effect a solvent can have on electrostatic self-assembly. Critical to assembly is the requirement for a minimum charge on a surface of an object, below which a solvent can suppress electrostatic attraction. Examples drawn from the literature are used to illustrate how switches in behavior are mediated by the solvent; these in turn provide a fundamental understanding of electrostatic particle-surface interactions applicable to many areas of materials science and nanotechnology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.