Abstract

The existence of the oxygen-containing functional groups on MXene surface makes it a potential electrode material in supercapacitor based on a redox mechanism. However, the irreversible stacking of MXenes will lead to an insufficient utilization of these functional groups. To solve this problem, we fabricated a composite electrode comprised of 2D delaminated Ti3C2 sheets (d-Ti3C2) and 3D Ni foam (NF) by electrostatic self-assembly. In this electrode, d-Ti3C2 nanosheets are adsorbed on the surface of 3D Ni foam skeleton structure, eliminating the need for insulative polymer binders. The self-assembly strategy endows d-Ti3C2/NF composites with unique 2D/3D structure which possesses the merits of excellent conductivity, sufficient active sites, high charge transfer efficiency and short ions diffusion path. As a result, the d-Ti3C2/NF composite electrode exhibits a high specific capacitance up to 654 F g−1 at 1 A g−1 and good cycling stability. An asymmetrical supercapacitor with d-Ti3C2/NF composite as a positive electrode, bulk Ti3C2 (b-Ti3C2) as a negative electrode and 6 M KOH as electrolyte, exhibits a maximum energy density of 18.1 Wh kg−1 (at 397.8 W kg−1) and excellent cycling stability (80.6% after 5000 cycles). The results indicate that d-Ti3C2/NF composite is a promising electrode material for practical energy storage devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.