Abstract

Sapphire substrates with different orientations have wide applications due to their excellent physical, chemical and optical properties. However, the chemical mechanical polishing of sapphire is challenging due to its chemical inertness, extreme hardness and brittleness. Herein, chemical mechanical polishing of A- and C-plane sapphire was systematically studied using α-Al2O3 and silica abrasives and polishing mechanism was analyzed by X-ray photoemission spectroscopy (XPS) and nanoindentation meter. The high MRR selectivity for C-plane sapphire in α-Al2O3 slurry is the synergy of selective hydration of C-plane and stronger crystal structure of A-plane. The low MRR selectivity for C-plane sapphire in silica slurry can be attributed to the formation of Al2SiO5 on both planes which reduced the impact of strong mechanical effect of α-Al2O3 abrasives. To improve the MRR of A-plane sapphire, a new nanocomposite particle with alumina as the core and silica as the soft shell was prepared by an electrostatic self-assembly method. The new composite abrasives combined the mechanical effect of α-Al2O3 abrasives and chemical effect of silica abrasives and demonstrated substantially higher MRR for A-plane sapphire than pure alumina abrasives, pure silica abrasives and physical mixture of alumina+silica abrasives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call