Abstract

The injection of powdered sorbents, such as activated carbon, for mercury emissions control at coal-fired power plants has primarily taken place upstream of electrostatic precipitators (ESPs), which far outnumber baghouses in the U.S. Although full-scale sorbent injection tests have demonstrated varying degrees of mercury removal efficiency, the actual behavior of powdered activated carbon (PAC) within an ESP has not been well-established, particularly as this behavior relates to adsorbing gas-phase mercury. In the present experimental investigation, results obtained in a lab-scale ESP indicate that the electrical properties of PAC may cause its collection in a full-scale ESP to be significantly different from that of the native fly ash. There appears to be potential for significant collection of PAC on the discharge electrode wires of an ESP. Because these wires are typically not rapped as frequently as collection electrodes in an ESP, over time, such behavior could potentially create a series of cylindr...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.