Abstract
Two β-diketone mononuclear Dy(III) compounds, formulated as Dy(BTFA)3(H2O)2 (1) and Dy(BTFA)3(bpy) (2) (BTFA = 3-benzoyl-1,1,1-trifluoroacetone, bpy = 2,2'-bipyridine), were prepared. Compound 1 can be identified to transform to 2 in the attendance of bpy coligand, when the local geometry symmetry of eight-coordinated Dy(III) ion changes from a dodecahedron (D2d) in 1 to a square antiprism (D4d) in 2. Fine-tuning structure aroused by auxiliary ligand has dramatical impact on magnetic properties of compounds 1 and 2. Magnetic investigations demonstrate that both 1 and 2 display dynamic magnetic relaxation of single-molecule magnets (SMMs) behavior with different effective barriers (ΔE/kB) of 93.09 K for 1 under zero direct-current (DC) field as well as 296.50 K for 1 and 151.01 K for 2 under 1200 Oe DC field, respectively. As noticed, compound 1 possesses higher effective barrier than 2, despite 1 exhibiting a lower geometrical symmetry of the Dy(III) ion. Ab initio studies reveal that the Kramers doublet ground state is predominantly axial with the gz tensors of two compounds matching the Ising-limit factor of 20 anticipated for the pure MJ = ±15/2 state. Electrostatic analysis confirms the uniaxial anisotropy directions, highlighting that the proper electrostatic distribution of the coordination sphere around Ln(III) center is the critical factor to improve the magnetic anisotropy and determine the dynamic behaviors of SMMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.