Abstract

To realize long-term lunar exploration, it is essential to develop technologies such as drilling, extraction, and chemical processing of lunar soil to achieve in-situ resource utilization (ISRU). Classification of particle size is one of the most important technologies required for ISRU. Because conventional techniques that utilize air flow and require high power are not suitable for operation on the Moon, the authors have developed two new technologies for electrostatic particle-size classification utilizing the balance between the electrostatic force and gravitational force. Our experiment demonstrated that particles less than 20 μm in size could be efficiently separated from the bulk of the regolith. Numerical method that can predict the performance in the lunar environment has been developed based on a threedimensional Discrete Element Method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.