Abstract

By the example of four even members in a homologous series of sodium n-alkyl sulfates (decyl-, dodecyl-, tetradecyl-, and hexadecyl sulfate) and with the use of the Debye-Hueckel theory of strong electrolytes the parameters are calculated that determine electrostatic interactions in micellar solutions of surfactants. Calculation results for the Gibbs electrostatic energy of micellization are compared to those obtained from one of the approximate solutions of the Poisson-Boltzmann equation and also to the results of its numerical integration for spherical micelles. Applicability conditions of the Debye-Hueckel theory are determined with respect to the micelle concentration and size and the number of carbon atoms in a surfactant molecule. It is shown that the Debye-Hueckel theory in the proposed version enables an efficient and quite accurate calculation of all electrostatic properties of micelles and ionic micellar solutions for surfactants with a number of carbon atoms in a molecule starting from 10 and more and at concentrations up to 0.15 mol/dm3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.