Abstract

In this work, different systems of colloidally stable, ampholytic microgels (μGs) based on poly(N-vinylcaprolactam) and poly(N-isopropylacrylamide), wherein the anionic and cationic groups are randomly distributed, were investigated. Fourier transmission infrared spectroscopy and transmission electron microscopy confirmed the quantitative incorporation and random distribution of ionizable groups in μGs, respectively. The control of hydrodynamic radii and mechanical properties of polyampholyte μGs at different pH values was studied with dynamic light scattering and in situ atomic force microscopy. We have proposed a model of pH-dependent polyampholyte μG, which correctly describes the experimental data and explains physical reasons for the swelling and collapse of the μG at different pHs. In the case of a balanced μG (equal numbers of cationic and anionic groups), the size as a function of pH has a symmetric, V-like shape. Swelling of purely cationic μG at low pH or purely anionic μG at high pH is due to e...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.