Abstract
The rotational mobilities of small solute molecules encapsulated in tetramethyl orthosilicate (TMOS) sol-gels have been investigated by EPR spectroscopy of encapsulated nitroxide probes and by high-resolution NMR spectroscopic measurements of transferred NOE's (trNOE's), of T(1)'s, and of T(1)'s in the rotating frame (T(1)rho). The two spectroscopic methods are sensitive to motions on different time scales and hence, are nicely complementary. Suites of neutral, positively, and negatively charged nitroxide probes (EPR) and of simple diamagnetic small molecules (NMR) were selected to disclose influences of electrostatic interactions with the sol-gel walls and to probe the presence of multiple populations of molecules in distinct regions of the sol-gel pores. For neutral and negatively charged solute probes, both techniques disclose a single population with a significantly increased average rotational correlation time, which we interpret at least in part as resulting from exchange between free-volume and transiently immobilized surface populations. The electrostatic attraction between cationic probes and the negatively charged sol-gel walls causes the positively charged probes to be more effectively immobilized and/or causes a greater percentage of probes to undergo this transient immobilization. The EPR spectra directly disclose a population of cationic probes which are immobilized on the X-band EPR time scale: tau(c) greater than or approximately equal 10(-7) s. However, NMR measurements of trNOE's and of T(1)rho demonstrate that this population does exchange with the free-volume probes on the slower time scale of NMR. This approach is equally applicable to the study of solutes within other types of confined spaces, as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.