Abstract

Rotational state-selection of the asymmetric-top molecule propylene oxide was carried out using an electrostatic hexapole field of 85-cm length. Molecular beam intensities were monitored by a quadrupole mass spectrometer. It was found that beam intensities of molecular beams for pure propylene oxide and those seeded in He and in Ar increased with increasing hexapole voltages. The hexapole voltage dependence of the beam intensity, which is called the focusing curve, was interpreted by computer simulation of the trajectories of molecules in the hexapolar field due to the Stark effect, as a function of rotational temperatures of molecular beams. The calculated best fit focusing curves, when compared with the experimental results, demonstrated that the rotational temperatures, associated with the distribution of states of a given rotational angular momentum J, are similar to the translational temperatures. It was found that the M = 0 states (where M is the projection of J along the direction of the electrostatic field) and negative values of the pseudoquantum number tau of propylene oxide can be selected using our experimental setup. These results suggest that the hexapole electric field is a tool even for the selection of rotational and orientation states of asymmetric-top molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.