Abstract

Current strategies for high-performance immunoassay generally require a sandwich structure for signal amplification. This strategy is limited to multivalent antigens and complicates the detection scheme. Herein we demonstrate a class of simple one-step ultrasensitive immunoassay with the adoption of double-stranded DNA (dsDNA) as "conductive spring" to bridge the electrode and redox-reporter/antibody-receptor comodified gold nanoparticles (AbFc@AuNPs). Upon biorecognition between antigen and antibody, the charge of the AuNPs changes, enhancing the electrostatic interaction between the AuNPs and Au electrode surface, and condensing the dsDNA chain. For the first time, the sensitive response of the electrochemical redox current to the DNA chain length is utilized to achieve an ultrahigh sensitivity down to fM level. Only the primary antibody needed in the recognition interface ensures the one-step immunoreaction works well with monovalent antigens, which ensure this method as a promising general alternative means for fast, high-throughput or point-of-care clinical applications even for very challenging clinically relevant samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.