Abstract

The enormous potential of solar energy harvesting plants to provide clean energy is severely limited by dust accumulation on their optical surfaces. In lieu of the most commonly-practiced manual cleaning method of using high-pressure water jets, electrodynamic screen (EDS) technology offers an attractive solution for removing dust particles from optical surfaces using electrostatic forces. In this paper, the impacts of different EDS design parameters in the electric field distribution on an EDS have been studied. Furthermore, based on electric field expressions, closed-form solutions for multipolar dielectrophoretic (DEP) forces in the EDS application are provided. Detailed evaluation of the EDS performance necessitates investigation of different forces involved in the dust removal process. Different comparisons are made between repelling and attracting forces exerted on dust particles deposited on an EDS surface. These comparisons elucidate EDS performance in the removal of a given size range of dust particles. The significant detrimental impact of relative humidity upon the dust removal process is quantitatively addressed. It is shown how just a 10 percent increase in relative humidity can make the repelling force ineffective in the dust removal process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call