Abstract

Direct interspecies electron transfer (DIET) is a breakthrough that can surpass the limitations of anaerobic digestion. Conductive materials and polarized bioelectrodes are known to induce DIET for methane production but are still challenging to apply at a field scale. Herein, compared to polarized bioelectrodes, electrostatic fields that promote DIET were investigated in an anaerobic reactor with conductive materials. As a conductive material, activated carbon enriched its surface with electroactive microorganisms to induce DIET (cDIET). cDIET improved the methane yield to 254.6 mL/g CODr, compared to the control. However, polarized bioelectrodes induced electrode-mediated DIET and biological DIET (bDIET), in addition to cDIET, improving the methane yield to 310.7 mL/g CODr. Electrostatic fields selectively promoted bDIET and cDIET for further methane production compared to the polarized bioelectrodes. As the contribution of DIET increased, the methane yield increased, and the substrate residue decreased, resulting in a significant improvement in methane production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.