Abstract

With decreasing device dimensions, the performance of carbon nanotube field-effect transistors (CNFETs) is limited by high OFF currents except at low drain voltages. Introducing an asymmetry between source and drain electrostatics can improve the performance, reducing OFF currents and extending the usable range of drain voltage. The improvement is most dramatic for ambipolar Schottky-barrier CNFETs. Moreover, this approach allows a single device to exhibit equally good performance as an n- or p-type transistor, by changing only the sign of the drain voltage. Even for CNFETs having ohmic contacts, an asymmetric design can greatly improve the performance for small-bandgap nanotubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.