Abstract

Electrokinetic measurements are carried out in suspensions of liposomes made from mixtures of charged (cardiolipin, CL) and neutral (phosphatidylcholine, PC) lipids in the presence of lysine and lysine-based polypeptides. Neither monolysine nor polylysines adsorbed on neutral (PC) membranes. In the case of negatively charged membranes (CL/PC) all polypeptides showed a sharp dependence of liposome electrophoretic mobility on the amount of polymer added to the cell. In suspension of cardiolipin liposomes the position of zero charge point coincided for all high-molecular polylysines; thus, pentalysine neutralizes the membrane surface, whereas polycations with a higher polymerization degree change a sign of the surface charge. Electrophoretic mobility of liposomes in plateau range depended on the molecular weight of polylysines and composition of liposomes; for large macromolecules the absolute value came close to its value for the initial liposomes. Adsorption of polycations on planar bilayer lipid membranes (BLM) resulted in alteration of the boundary potential measured by the method of intramembranous field compensation (IFC). The electrokinetic measurements and IFC method gave close results in the case of lysine monomers; their surface concentration could be fitted by an isotherm of the molecule distribution between the membrane surface and solution. Considerable differences of the surface and boundary potentials found in the case of pentalysine, correspond to changes in the dipole component of boundary potential induced by the adsorbed molecules. Using the IFC method, the kinetics of the adsorption process before saturation was studied. The adsorption of polylysines was markedly slower (more than hour) than that of pentalysine (tens of min) or monolysine (minutes). Washout experiments showed that adsorption of penta-and monolysine on planar BLM was reversible, while that of high-molecular polylysines was practically irreversible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call