Abstract

Irreversible electroporation (IRE) is a new technique in which a series of short pulses with high frequency electrical energy is applied on the targeted regions of cells or vesicles for their destruction or rupture formation. IRE induces lateral tension in the membranes of vesicles. We have investigated the electrostatic interaction effects on the constant electrical tension-induced rate constant of irreversible pore formation in the membranes of giant unilamellar vesicles (GUVs). The electrostatic interaction has been varied by changing the salt concentration in buffer and the surface charge density of membranes. The membranes of GUVs are synthesized by a mixture of negatively charged lipid dioleoylphosphatidylglycerol (DOPG) and neutral lipid dioleoylphosphatidylcholine (DOPC) using the natural swelling method. The rate constant of pore formation increases with the decrease of salt concentration in buffer along with the increase of surface charge density of membranes. The tension dependent probability of pore formation and the rate constant of pore formation are fitted to the theoretical equation, and obtained the line tension of membranes. The decrease in energy barrier of a prepore due to electrostatic interaction is the key factor causing an increase of rate constant of pore formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call