Abstract

Physical properties of particulate whey protein isolate gels formed under varying electrostatic conditions were investigated using large strain rheological and microstructural techniques. The two treatment ranges evaluated were adjusting pH (5.2‐5.8) with no added NaCl and adjusting the NaCl (0.2‐0.6 M) at pH 7. Gels (10% protein w/v) were formed by heating at 80C for 30 min. The large strain properties of fracture strain (γf), fracture stress (σf), and a measure of strain hardening (R0.3) were determined using a torsion method. Gel microstructure was evaluated using scanning electron microscopy (SEM) and gel permeability (Bgel). Overlaying σf and γf curves for pH and NaCl treatments demonstrated an overlap where gels of equal σf and γf could be formed by adjusting pH or NaCl concentration. The high fracture stress (σf∼ 23 kPa and γf∼ 1.86) pair conditions were pH 5.47 and 0.25 M NaCl, pH 7.0. The low fracture stress (σf∼ 13 kPa and γf∼ 1.90) pair conditions were pH 5.68 and 0.6 M NaCl, pH 7.0. The 0.25 M NaCl, pH 7 treatment demonstrated higher R0.3 values than the pH 5.47 treatment. When the sulfhydryl blocker n‐ethylmaleimide was added at 2 mM to the 0.25 M NaCl, pH 7 gel treatment, its rheological behavior was NSD (p>0.05) to the pH 5.47 gel treatment, indicating disulfide bond formation regulated strain hardening. Altering surface charge or counterions, and disulfide bonding, was required to produce gels with similar large strain rheological properties. An increase in gel permeability coincided with an increase in pore size as observed by SEM, independent of rheological properties. This demonstrated that at the length scales investigated, microstructure was not linked to changes in large strain rheological properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.