Abstract

Using light scattering and Atomic Force Microscopy techniques, we have studied the kinetics and equilibrium scattering intensity of collagen association, which is pertinent to the vitreous of the human eye. Specifically, we have characterized fibrillization dependence on pH, temperature, and ionic strength. At higher and lower pH, collagen triple helices remain stable in solution without fibrillization. At physiological pH, fibrillization occurs and the fibril growth is slowed upon either an increase in ionic strength or a decrease in temperature. The total light scattering with respect to ionic strength is non-monotonic in these conditions as a result of a competing dependence of fibril concentration and size on ionic strength. Fibril concentration is the highest at lower ionic strengths and rapidly decays for higher ionic strengths. On the other hand, fibril size is larger in solutions with higher ionic strength. We present a theoretical model, based on dipolar interactions in solutions, to describe the observed electrostatic nature of collagen assembly. At extreme pH values, either very low or very high, collagen triple helices carry a large net charge of the same sign preventing their assembly into fibrils. At intermediate pH values, fluctuations in the charge distribution of the collagen triple helices around roughly zero net charge lead to fibrillization. The growth kinetics of fibrils in this regime can be adequately described by dipolar interactions arising from charge fluctuations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.