Abstract

The current methods allow for encapsulation of cells inside spherical microcapsules made of a matrix covered by a permselective membrane using an electrostatic droplet generator with 1-nozzle or 2-nozzle heads. However, some potentially useful materials for the outer membranes cannot be put into direct contact with hydrophilic core filled by cells during the manufacturing process. Therefore, we designed a novel 3-coaxial-nozzle head that allows for the third fluid to separate the core material from the membrane material. The equipment was applied for manufacturing spherical microcapsules comprised of cell-friendly alginate core surrounded by semipermeable polyethersulfone membrane. The obtained microcapsules had a diameter between 0.84 mm and 1.79 mm, and the diameter correlated negatively with the applied electric voltage. The thickness of the membrane varied from 171 µm to 450 µm. The SEM images of the interior of microcapsules revealed highly porous membrane structure typical for synthetic membranes obtained by a wet phase inversion method. Bakery yeast cells encapsulated inside the alginate-polyethersulfone microcapsules retained their proliferation ability proving the effectiveness and safety of this encapsulation technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.