Abstract
A numerical solution of the nonlinear Poisson−Boltzmann equation based on finite element approximation is developed to assess the interaction force between two identical spherical particles located inside a straight cylindrical capillary. The interaction forces for constant potential and constant charge particle surfaces are calculated for different surface potentials on the cylinder wall, various particle sizes, and different cylinder radii. The interaction force between the spheres was affected significantly by the proximity of the charged cylinder wall, particularly for constant surface potential particles. The influence of the cylinder wall on the particle−particle interaction force was most pronounced when the particle radius was comparable to the cylinder radius. The results suggest that when the cylinder and the particle surfaces are like-charged (bearing the same sign of the charge or surface potential), the electrostatic repulsion between the two spherical colloids is considerably suppressed. Con...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.