Abstract

We address the effects of chain connectivity on electrostaticfluctuations in polyelectrolyte solutions using a field-theoretic, renormalizedGaussian fluctuation (RGF) theory. As in simple electrolyte solutions [Z.-G. Wang,Phys. Rev. E 81, 021501 (2010)], the RGF provides a unified theory forelectrostatic fluctuations, accounting for both dielectric and charge correlationeffects in terms of the self-energy. Unlike simple ions, the polyelectrolyte self energydepends intimately on the chain conformation, and our theory naturally provides aself-consistent determination of the response of intramolecular chain structure topolyelectrolyte and salt concentrations. The effects of the chain-conformation on theself-energy and thermodynamics are especially pronounced for flexiblepolyelectrolytes at low polymer and salt concentrations, where application of thewrong chain structure can lead to a drastic misestimation of the electrostaticcorrelations. By capturing the expected scaling behavior of chain size from dilute tosemi-dilute regimes, our theory provides improved estimates of the self energy at lowpolymer concentrations and correctly predicts the eventual N-independenceof the critical temperature and concentration of salt-free solutions of flexiblepolyelectrolytes. We show that the self energy can be interpreted in terms of aninfinite-dilution energy μm,0el and a finite concentrationcorrelation correction μcorr which tends to cancel out the formerwith increasing concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call