Abstract

Graphene has shown great potential as electrochemical electrodes in energy storage and sensor applications due to its unique combination of semiconducting and metallic properties. We here demonstrate that graphene’s semimetallic nature imparts it with a continuously tunable electrochemical reactivity. Extrinsic doping was shown to modify the reaction rate of graphene microelectrode arrays and a direct correlation between graphene’s linearly varying density of states and its electron transfer rate was established. Dynamic control of the charge transfer process enabled the variation of graphene’s reaction rate over 1 order of magnitude and was confirmed by a simple Gerischer–Marcus charge transfer kinetics model. The observed fine control over graphene’s electrochemical properties enabled a 2-fold increase in the resolution of an electrochemical impedance sensor. These results not only explain previous observations of graphene’s spatially varying electrochemical reactivity and highlight the importance of do...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.