Abstract
The investigation of the switching current probability distribution of a Josephson junction is a conventional tool to gain information on the phase slips dynamics as a function of the temperature. Here we adopt this well-established technique to probe the impact of an external static electric field on the occurrence of phase slips in gated all-metallic titanium (Ti) Josephson weak links. We show, in a temperature range between 20 mK and 420 mK, that the evolution of the phase slips dynamics as a function of the electrostatic field starkly differs from that observed as a function of the temperature. This fact demonstrates, on the one hand, that the electric field suppression of the critical current is not simply related to a conventional thermal-like quasiparticle overheating in the weak-link region. On the other hand, our results may open the way to operate an electrostatic-driven manipulation of phase slips in metallic Josephson nanojunctions, which can be pivotal for the control of decoherence in superconducting nanostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.