Abstract

AbstractFast breakdown (FB), a breakdown process composed of systems of high‐velocity streamers, has been observed to precede lightning leader formation and play a critical role in lightning initiation. Vigorous FB events are responsible for the most powerful natural radio emissions on Earth, known as narrow bipolar events (NBEs). In this paper, an improved version of the Griffiths and Phelps (1976, https://doi.org/10.1029/jc081i021p03671) model of streamer breakdown is used alongside supervised machine learning techniques to probe the required electric fields and potentials inside thunderstorms to produce FB and NBEs. Our results show that the electrostatic conditions needed to produce FB observed in New Mexico at 9 km altitude and FB in Florida at 14 km altitude are about the same, each requiring about 100 MV potential difference to propagate 500 m. Additionally, the model illustrates how electric field enhancement ahead of propagating FB can initiate rebounding FB of the opposite polarity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call