Abstract
Electrostatic phenomena are known to enhance both wind- and insect-mediated pollination, but have not yet been described for nectar-feeding vertebrates. Here we demonstrate that wild Anna's Hummingbirds (Calypte anna) can carry positive charges up to 800 pC while in flight (mean ± s.d.: 66 ± 129 pC). Triboelectric charging obtained by rubbing an isolated hummingbird wing against various plant structures generated charges up to 700 pC. A metal hummingbird model charged to 400 pC induced bending of floral stamens in four plants (Nicotiana, Hemerocallis, Penstemon, and Aloe spp.), and also attracted falling Lycopodium spores at distances of < 2 mm. Electrostatic forces may therefore influence pollen transfer onto nectar-feeding birds.
Highlights
Electrostatic forces can play an important role in pollination mediated by both wind and animal vectors [1]
Wild Anna's hummingbirds harbor electrostatic charges up to 800 pC while foraging, which is a value much higher than the positive charges described for foraging honeybees
Net charge carried by hummingbirds generally decreased with increasing relative humidity, but some charge remained even under conditions near 100% relative humidity (Fig 3)
Summary
Electrostatic forces can play an important role in pollination mediated by both wind and animal vectors [1]. Electrical charge carried by insects may be sufficient to increase the number of pollen grains transferred to their bodies during floral visits [3]. Placing a charged metal model or an actual tethered insect close to a grounded source of pollen grain can induce attraction [4], and presumably increase the likelihood of subsequent pollen transfer by an insect to another flower. These electrostatic means of pollination are currently being explored for agricultural applications (see [5]).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.