Abstract

The effects of redox potential and electric charge on the rate of electron-transfer reaction by a two-electron process were investigated. For electron donors, β-NADH, β-NADPH and α-NADH were used; they have similar structures but different charges and different redox potentials. For electron acceptors, the following 5-ethylphenazine derivatives were used: 1-(3-carboxypropyloxy)-5-ethylphenazine, 1-(3-ethoxycarbonylpropyloxy)-5-ethylphenazine, and 1-[ N-(2-aminoethyl)carbamoylpropyloxy]-5-ethylphenazine. They have similar structures and different charges. Using these donors and acceptors, the potential and the charge effects were estimated separately. In the potential effect, a linear free energy relationship was observed for the change in the redox potential of the donor with a Brønsted slope of about unity. On the other hand, the slope for the change in the potential of the acceptor was about 0.5. These results show that the potential effect due to electron donors is different from that due to electron acceptors. A linear relationship was also observed between activation free energy and electrostatic force (or potential). The redox potential effect and the electrostatic effect are independent and additive. New theory for the mechanism of electron-transfer reactions is needed to explain these results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call