Abstract

Immunofluorescence and electron microscopical studies on the intracellular distribution of intermediate filaments (IFs) have demonstrated a close proximity of these cytoskeletal structures to cellular membranes. Moreover, nonepithelial IF (protein)s have been shown to exhibit high affinities for lipids, especially for negatively charged and nonpolar lipids. Here, using hydrophobic labeling with the photoactivatable phosphatidylcholine analogue [3H]1-palmitoyl-2-[11-[4-(trifluoromethyldiazirinyl]undecanoyl+ ++]-sn- glycero-3-phosphorylcholine or with 1-azidopyrene at low and physiological ionic strength, it is demonstrated that the IF subunit protein vimentin can interact with the hydrophobic core of lipid bilayers, in addition to strong ionic relationships between both reactants. Whereas the presence of acidic phospholipids in the lipid vesicles was absolutely essential for efficient vimentin labeling, cholesterol played a synergistic role in this reaction. Proteolytic degradation of photolabeled vimentin localized the derivatization exclusively to the non-alpha-helical, highly positively charged N-terminal domain of the filament protein. Furthermore, circular dichroism studies performed on the isolated N terminus of vimentin revealed a significant increase in the alpha-helical content of the polypeptide upon its interaction with vesicles containing negatively charged phospholipids. These results indicate an amphiphilic character of the N terminus and suggest that the cationic arginine residues of the N-terminal domain react with the negatively charged head groups of acidic phospholipids prior or parallel to interaction of the polypeptide with hydrophobic regions of the lipid bilayer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.