Abstract

Polymer-grafted hairy nanoparticles (HNPs) that combine the unique properties of inorganic nanoparticles (NPs) and polymers are attractive building blocks for the layer-by-layer assembly of functional hybrid materials, but the adsorption behaviors of HNPs on substrates remain unclear. This article describes a systematic study on the adsorption behaviors of charged polymer-grafted HNPs on oppositely charged substrates in different solvent media via a combination of experiments and simulations. It is shown in simulations that the adsorption process of HNPs is associated with the release of counterions around charged polymers on HNPs, thus resulting in a higher energy barrier of NP adsorption than bare NPs without charged polymer tethers. This energy barrier decreases with decreasing the dielectricity of solvents or ionization degree of grafted polymers or increasing ionic strength of the solution. Furthermore, the theoretical prediction is confirmed in experiments by using a model system of poly(acrylic acid)-grafted silica NPs and poly(diallyldimethylammonium chloride)-modified wafers. The work provides guidance for the electrostatic assembly of HNPs into functional hybrid composites with applications in membranes, optical devices, and biomedicines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call