Abstract

A three-dimensional (3D) hyaluronic acid (HA) nanofibrous scaffold was successfully fabricated to mimic the architecture of natural extracelluar matrix (ECM) based on electrospinning. Thiolated HA derivative, 3,3′-dithiobis(propanoic dihydrazide)-modified HA (HA-DTPH), was synthesized and electrospun to form 3D nanofibrous scaffolds. In order to facilitate the fiber formation during electrospinning, Poly (ethylene oxide) (PEO) was added into the aqueous solution of HA-DTPH at an optimal weight ratio of 1:1. The electrospun HA-DTPH/PEO blend scaffold was subsequently cross-linked through poly (ethylene glycol)-diacrylate (PEGDA) mediated conjugate addition. PEO was then extracted in DI water to obtain an electrospun HA-DTPH nanofibrous scaffold. NIH 3T3 fibroblasts were seeded on fibronectin-adsorbed HA-DTPH nanofibrous scaffolds for 24 h in vitro. Fluorescence microscopy and laser scanning confocal microscopy revealed that the 3T3 fibroblasts attached to the scaffold and spread, demonstrating an extended dendritic morphology within the scaffold, which suggests potential applications of HA-DTPH nanofibrous scaffolds in cell encapsulation and tissue regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.