Abstract

The metal (Fe/Co), nitrogen co-doped carbon represent an important class of oxygen reduction reaction (ORR), which can be obtained via the thermal treatment of transition-metal macrocycles (TMMs). However, the N4-chelate complex with metal atom (M-N4) moieties as major activity site for ORR are easily destroyed to form inorganic metal species during simple pyrolysis of TMMs. In this report, polyacrylonitrile (PAN) nanofibers were prepared by electrospinning containing a small amount of hemin (chloroprotoporphyrin IX iron(III), TMMs). The electrospun nanofibers were converted into Fe, N co-doped carbon nanofibers (Fe-N-CNFs) through preoxidized and thermal treatment. The PAN macromolecules can prevent hemin from aggregation during the process of pyrolysis. The Fe elemental mapping demonstrated that Fe species probably existed in a single atom state. The Fe K-edge X-ray absorption fine structure spectrum of Fe-N-CNFs proved that the Fe-N4 moieties have been successfully reserved. The X-ray photoelectron spectra of Fe-N-CNFs indicated that the amount of Fe-N4 moieties increased with the increased percent of hemin. Therefore, the Fe-N-CNFs exhibited the higher catalytic activity for ORR compared with Pt electrocatalysts. Furthermore, the Fe1-N-CNFs displayed higher stability and methanol tolerance than Pt/C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.