Abstract
Tissue engineering is an important emerging area for creating biological alternatives for harvested tissues, implants, and prostheses. Biocompatible and biodegradable polymeric materials are considered an important class of materials that can be used as scaffolds in tissue engineering applications. In this work, the system studied was nanocomposites of hydroxyapatite (HA) dispersed in a matrix of PLLA. Scaffolds have to present similar structure and also function as an artificial extracellular matrix for cell attachment and growth. Hydroxyapatite is a bioactive ceramic and has been used in applications of repairing bone tissue due to its biocompatibility and osteoconductivity. Poly(L- lactic acid) is a biodegradable and biocompatible polymer and has been used in different applications in the biomedical field. In this work, polymer solutions were prepared with different percentages of hydroxyapatite and porous membranes consisting of non-woven nanostructured fibers were obtained by electrospinning. The process parameters were: voltage of 13kV, flow rate of 0.5 ml/h and distance from the tip of the needle to the collector of 12 cm. By using these process parameter, fibrous membranes were obtained with different concentrations of HA (1.96, 4.76, 9 [wt %]). The morphology of the samples was observed by SEM and the characteristic physic-chemical were analyzed by XRF, XRD, DSC and FTIR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.