Abstract

The Caco-2 cell monolayer has been extensively used for the high-throughput assessing of nutrient absorption, screening of drug permeability, and studying the intestinal physiological process in vitro. The most used Caco-2 cell model is the Transwell model with polycarbonate microporous membranes. However, Caco-2 cells in the classical Transwell model need 21 days to gain an intact and mature monolayer. Electrospun nanofiber scaffolds mimicking the natural extracellular matrix could improve cell adhesion, proliferation, and expression, whereas there are no reports that intestinal cells were cultured on the electrospun nanofiber scaffolds. Here, electrospun polylactic acid (PLA) nanofiber scaffolds were chosen as the ideal scaffolds for Caco-2 cell monolayers to construct a modified Transwell. Cell morphology and polarity were studied. Monolayer barrier properties were assessed by measuring transepithelial electrical resistance (TEER) and the leakage of phenol red. As found, intact Caco-2 cell monolayers were formed on the PLA nanofiber scaffolds after 4 days of culture. After 4 days, the TEER increased to 422 Ω·cm2 and the apparent permeability coefficients of phenol red decreased to 1.0 ± 0.1 × 10-6 cm/s, suggesting that Caco-2 cell monolayers developed a formidable barrier to small molecules on the surface of PLA nanofiber scaffolds. Microvilli and tight junctions were clearly visible after day 3. Besides, Caco-2 cell monolayers on the surface of PLA nanofiber scaffolds presented higher differentiation properties than on the surface of the polycarbonate microporous membrane in traditional Transwell including higher alkaline phosphatase activity and higher P-gp activity. Results of quercetin absorption and probiotics adhesion demonstrated that Caco-2 cell monolayers formed on the surface of PLA nanofiber scaffolds also had better physiological function and prediction function in vitro. Overall, the present study indicated that the Transwell with the structurally and functionally biomimetic electrospun PLA nanofiber scaffold could be potentially developed as a promising in vitro intestinal model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call