Abstract

Electrospinning of biopolymer and inorganic substances is one of the efficient ways to combine various advantageous properties in one single fibrous structure with potential for tissue engineering applications. In the present study, to integrate the high stiffness of polyhydroxybutyrate (PHB), the flexibility of poly(ε-caprolactone) (PCL) and the bioactivity of 58S bioactive glass, PHB/PCL/58S sol-gel bioactive glass hybrid scaffolds were fabricated using combined electrospinning and sol-gel method. Physical features such as fiber diameter distribution, mechanical strength and Young's modulus were characterized thoroughly. FTIR analysis demonstrated the successful incorporation of 58S bioactive glass into the blend polymers, which greatly improved the hydrophilicity of PHB/PCL fibermats. The primary biological response of MG-63 osteoblast-like cells on the prepared fibrous scaffolds was evaluated, proving that the 58S glass sol containing hybrid scaffold were not only favorable to MG-63 cell adhesion but also slightly enhanced cell viability and significantly increased alkaline phosphate activity .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.