Abstract

Composite polymer electrolytes (CPEs) based on polyethylene oxide (PEO) offer manufacturing feasibility and outstanding mechanical flexibility. However, the low ionic conductivity of the CPEs at room temperature, as well as the poor mechanical properties, have hindered their commercialization. In this work, Solid-state electrolytes based on polyethylene oxide (PEO) with and without fumed SiO2 (FS) nanoparticles are prepared by electrostatic spinning process. The as-spun PEO hybrid nanofiber electrolyte with 6.85 wt% FS has a relatively high lithium ion conductivity and electrochemical stability, which is 4.8 × 10-4 S/cm and up to 5.2 V vs. Li+/Li, respectively. Furthermore, it also shows a higher tensile strength (2.03 MPa) with % elongation at break (561.8). Due to the superior electrochemical and mechanical properties, it is promising as high-safety and all-solid-state polymer electrolyte for advanced Li-metal battery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call