Abstract

Abstract A biocatalyst was fabricated by the covalent immobilization of the enzyme catalase on a polyacrylonitrile (PAN) based nanofibrous membrane incorporating a glycopolymer. The glycopolymer poly-(6-O-vinylsebacoyl d -glucose) [poly-OVSEG] was synthesized by a water phase precipitation homopolymerization process, and its structure was characterized by Fourier transform infrared spectroscopy (FT-IR) and NMR. Composite membranes of PAN/poly-OVSEG nanofibers containing varying amounts (50–70%) of poly-OVSEG were subsequently prepared using electrospinning. The nanofibers were studied by scanning electron microscopy (SEM) and FT-IR. Their hydrophilicity was investigated by measuring water contact angles. With increasing content of poly-OVSEG, the contact angle decreases from 65.5 ± 2.5° to 15.2 ± 1.1°. Catalase was immobilized on the composite nanofibrous membranes by covalent binding. The maximum catalase adsorption capacity of the polyacrylonitrile-based nanofibrous membranes was observed to be ca. 46.5 mg/g. Over 50% of catalyst activity was retained and increased thermal stability observed post-immobilization (with maximum activity at pH 7.5 and 50 °C). This study demonstrates the potential of using electrospun membranes to improve the thermal and storage stabilities of biological catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call