Abstract

Blending allows to tailor and modulate the properties of selected polymers. Blends of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and polyethylene oxide (PEO) were fabricated by electrospinning in different weight ratios i.e. 100:0, 80:20, 70:30, 50:50, 0:100.In order to evaluate the influence of PEO addition on the final properties of PHBV, a complete microstructural, thermal and mechanical characterization of PHBV/PEO blends has been performed. The two neat polymeric membranes were also considered for the sake of comparison. The following characterization techniques were employed: scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy, simultaneous thermogravimetric and differential analyses (TG-DTA), differential scanning calorimetry (DSC), and uniaxial tensile tests.All electrospun mats consisted of randomly oriented and uniform fibers. It has been observed that the microstructure of PHBV/PEO was remarkably affected by blend composition. The average fiber size ranged between 0.5μm and 2.6μm. It resulted that the electrospun polymeric blends consisted of separate crystalline domains associated to an amorphous interdisperse phase. PHBV/PEO blends presented intermediate mechanical properties, in terms of tensile modulus and ultimate tensile stress, with respect to the two neat components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.