Abstract

ABSTRACTVarying amounts of exfoliated graphene oxide (GO) are systematically incorporated into nanoscale polyacrylonitrile (PAN) fibers via an electrospinning method. Subsequent treatment of the PAN–GO composite nanofibers under a moderate temperature and high pressure leads to the formation of membrane sheets with enhanced mechanical properties. scanning electron microscope, Fourier transform infrared spectroscopy, and contact angle measurements confirm the successful incorporation of the GO into the PAN nanofiber membranes whose diameter, porosity, and pore size are notably influenced by the amount of the GO content. These composite membranes also exhibit a gradual reduction in the water contact angle as a function of the hydrophilic GO content, resulting in a beneficial property for water purification. In addition, the proper integration of GO into the PAN nanofibers improves the protein rejection rate and water flux during the filtration process, which indicates the possibility of utilizing these types of composite membranes in water treatment systems. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 45858.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.