Abstract

Controlled delivery systems are used to improve therapeutic efficacy and safety of drugs by delivering them over a period of treatment to the site of action at a rate dictated by the need of the physiological environment. A wide variety of polymeric materials, either biodegradable or non-biodegradable but biocompatible, can be used as delivery matrices. Recently, nanofibrous scaffolds, such as the systems fabricated by electrospinning or electrospraying, have been used in the field of biomedical engineering as wound dressings, scaffolds for tissue engineering, and drug delivery systems. The electrospun nanofibrous scaffolds can be used as carriers for various types of drugs, genes, and growth factors, whereby the release profile can be finely controlled by modulation of the scaffold’s morphology, porosity, and composition. The main advantage of this system is that it offers site-specific delivery of any number of therapeutics from the scaffold into the body. The aim of this chapter is to review the recent advances on electrospun nanofibrous scaffolds based on biodegradable and biocompatible polymers for controlled drug and biomolecule delivery applications. The use of electrospun scaffolds as drug carriers is promising for future biomedical applications, particularly in the prevention of post-surgical adhesions and infections, for postoperative local chemotherapy, and for bone and skin tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.