Abstract

In this study, bio-ultrasound-assisted synthesized gold nanoparticles using Gracilaria canaliculata algae have been immobilized on a polymeric support and used as a glassy probe chemosensor for detection and rapid removal of Hg2+ ions. The function of the suggested chemosensor has been explained based on gold-amalgam formation and its catalytic role on the reaction of sodium borohydride and rhodamine B (RhB) with fluorescent and colorimetric sensing function. The catalyzed reduction of RhB by the gold amalgam led to a distinguished color change from red and yellow florescence to colorless by converting the amount of Hg2+ deposited on Au-NPs. The detection limit of the colorimetric and fluorescence assays for Hg2+ was 2.21 nM and 1.10 nM respectively. By exposing the mentioned colorless solution to air for at least 2 h, unexpectedly it was observed that the color and fluorescence of RhB were restored. Have the benefit of the above phenomenon a recyclable and portable glass-based sensor has been provided by immobilizing the Au-NPs and RB on the glass slide using electrospinning. Moreover, the introduced combinatorial membrane has facilitated the detection and removal of Hg2+ ions in various Hg (II)-contaminated real water samples with efficiency of up to 99%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call