Abstract

The electrospinning technique as a method for fabricating hydrophobic membranes for membrane distillation (MD) has received much attention in recent times. In this study, TiO2 functionalized with 1H,1H,2H,2H-perfluorooctyltriethoxysilane was added directly to the dope solution for electrospinning in order to increase the hydrophobicity of the resulting MD membranes. Three concentrations (10%, 15% and 20%) of polyvinylidene fluoride-co-hexafluoropropylene (PH) dope solution were used for electrospinning with various amounts of TiO2 (1%, 5% and 10%) to generate nanofibers. The electrospun nanofiber membrane (ENM) of 20% PH with 10% TiO2 exhibited the highest surface hydrophobicity (contact angle=149°) resulting from good dispersion of the TiO2 particles, while the highest liquid entry pressure of 194.5kPa was observed for the ENM comprising 10% PH with 10% TiO2 due to its reduced pore sizes. Furthermore, the ENMs containing 10% TiO2 exhibited better flux and stable salt rejection than commercial and ENMs without TiO2. Notably, there was no severe wetting in the 20% PH ENM with 10% TiO2 over seven days of operation, despite the high salt concentration (7.0wt% NaCl) of the feed water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.