Abstract
The ideal hemostatic agents should be able to stop bleeding quickly and avoid secondary bleeding caused by adhesion with blood clots during dressing change. Herein, a hydrophobic electrospun nanofiber membrane was prepared for achieving hemostasis, rationally targeting both attributes, via doping N-alkylated chitosan (N-CS) grafted with octadecyl into chitosan/polyethylene oxide (PEO). In vitro and in vivo coagulation tests showed that CPNs doped with small amounts of N-CS (CPN31) could significantly shorten hemostasis time and promote the formation of more stable and stronger blood clots. In particular, the whole blood clotting time of CPN31 (58.8 ± 2.2 s) was significantly lower than that of chitosan/PEO (CPN0) nanofiber membrane (67 ± 3.5 s) and the medical sterile gauze (86.7 ± 0.6 s). Furthermore, due to the hemophobic nature of CPNs, blood wetting of the dressing was severely limited and blood can coagulated at the site of liver injury in rats, thus reducing blood loss and allowing rapid removal of the dressing without triggering secondary hemorrhage. The CPN31 exhibited excellent hemostasis properties, easy to remove, blood compatibility, biocompatibility and promoting fibroblast proliferation properties. This hydrophobic CPNs is a promising biological adhesive for hemorrhage control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.