Abstract

Fiber technology plays a significant role in advancing drug research. While developing drug delivery systems, nanofiber technology has gained importance due to its high surface area to volume ratio and porosity. The most preferred nanofiber production method is the electrospinning method. This review focuses on electrospun nanofiber drug delivery systems, including analysis of critical process parameters affecting electrospinning and nanofiber properties. Moreover, the design strategies for nanofiber drug delivery systems are explored, including equipment preferences and design types. Given to these design strategies, it is possible to design either nanofiber mat or nanofiber itself. It has been shown that a tailor-made drug delivery system can be prepared using axial-based nozzles and other equipment options. In addition, the prominent features and usage areas of frequently used polymers are mentioned. General characterization studies of post-production nanofibers are discussed. Examples of areas of use for pharmaceutical purposes are presented. Finally, drug release kinetics were evaluated on electrospun nanofiber drug delivery systems. As a result of exhaustive evaluations, various effective applications in the literature have been shown to achieve remarkable results such as drug release manipulation, drug targeting, self-assembling formulation strategies. Therefore, it is clear that in the field of electrospun nanofiber technology, it is possible to modify all the process options and develop a unique drug delivery product, thanks to a comprehensive evaluation of the critical quality parameters of the drug product.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.