Abstract
In this study, nanotubular materials multi-walled carbon nanotubes (MWCNTs) were used to encapsulate a model drug, doxorubicine hydrochloride (DOX). Then, the drug-loaded nanotubes (DOX/CNTs) with an optimized drug encapsulation percentage were mixed with poly (lactide-co-glycolide) (PLGA) polymer solution for subsequent electrospinning to form drug-loaded composite nanofibrous mats. The morphology was characterized using scanning electron microscopy (SEM). The proliferation of mouse fibroblast cells cultured on both PLGA and CNTs-doped PLGA fibrous scaffolds were compared through 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide (MTT) assay of cell viability and SEM observation of cell morphology. In vitro drug release behavior was examined using UV-vis spectroscopy. We show that the incorporation of CNTs and DOX/CNTs within the nanofibrous mats does not significantly change the morphology of the mats. In addition, our results indicate that this double-container drug delivery system (both PLGA polymer and CNTs are drug carriers) is beneficial to avoid the burst release of the drug. The drug loaded elctrospinning composite nanofibrous mats developed in this study may find various applications in tissues engineering and pharmaceutical sciences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.