Abstract

Abstract Water-swellable rubber (WSR) is a kind of elastomeric material that possesses properties of rubber together with water swelling ability. In WSR, however, super water-absorbent resin does not disperse well in hydrophobic rubber, with very poor interfaces between them, so the hydrophilic part can easily break off from rubber networks and the swelling ability is ultimately lost. This study reports the improved water absorption property and stability of WSR obtained by using electrospun multi-scaled hybrid fiber mats of crosslinked poly(acrylic acid) (PAA) nanocomposite as water channels. Electrospinning of various superabsorbent fibers with hyperbranched polymer (HB) and/or graphene oxide (GO) was performed. With hybrid fillers added into PAA, spun fiber mats showed the increased water swelling ability due to the presence of spiderweb-like multi-scale structures and enhanced specific surface areas. The mats were added into conventional WSR and the resultant composites showed enhanced water swelling ability. The electrospun fibers acted as internal multi-scale water channels to bridge isolated PAA particles wrapped in hydrophobic rubber together and link the internal PAAs with the composite surface to enhance the short- and long-term water swelling ability of WSR. The effects and mechanisms of those fibers on enhancing water swelling properties of WSR are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.