Abstract
In the present work, a new solid phase microextraction (SPME) fiber coating based on modified silica-polyamide (PA) nanocomposite was electrospun on a stainless steel wire. Four modified silica-PA nanocomposites together with PA were fabricated by dispersing several typical modified silica nanoparticles in PA polymer solution prior to electrospinning. The surface characteristic of PA nanofibers and modified silica-PA nanocomposites was investigated using scanning electron microscopy (SEM). The homogeneity and the porous surface structure of the modified silica-PA nanocomposites were confirmed by SEM, showing nanofibers diameters lower than 170nm. The applicability of the new fiber coating was examined by headspace SPME of some selected chlorobenzenes (CBs), as model compounds, from aqueous samples. Subsequently, the extracted analytes were transferred into a gas chromatography (GC) by thermal desorption. Influencing parameters on the morphology of nanocomposites such as type of modified silica nanoparticles and the weight ratio of components were optimized. In addition, effects of different parameters influencing the extraction efficiency including extraction temperature, extraction time, ionic strength, desorption temperature, and desorption time were investigated and optimized. Eventually, the developed method was validated by gas chromatography–mass spectrometry (GC–MS). At the optimum conditions, the relative standard deviation values for a double distilled water spiked with the selected CBs at 100ngL−1 were 4–12% (n=3) and the limit of detection for the studied compounds was between 5 and 30ngL−1. The calibration curves of analytes were investigated in the range of 50–1000ngL−1 and correlation coefficients (R2) between 0.9897 and 0.9992 were obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.